以下引用論文
摩爾法測定氯離子
摩爾法測定氯離子的範圍為=5~100 mg/L。周少玲等[2]從理論上指出以鉻酸鉀為指示劑,在中性或弱堿性條件下,用硝酸銀標準溶液進行滴定實驗,由於AgCl的沈澱溶解損失,溶液中仍然余留0.44 mg/L的氯離子不能被滴定。所以對於氯離子含量低的水質用摩爾法測定會造成較大的分析誤差,而且測定精密度也較差。在用AgNO 3滴定氯離子的過程中,Ag+易與溶液中的氨形成銀氨絡離子Ag(NH 3)+,從而增加了AgNO 3的消耗量,造成分析結果偏高。所以,摩爾法測定中水中氯離子含量時,應控制溶液的pH值為中性。周強等[3]以耐鹽性較強的大麥品種“鑒4”幼苗為材料,用硝酸銀滴定法測定植物體內氯離子含量。結果得出在0~0.5 mol/L範圍內的線性關系較好,相關系數r為0.9986,但標準曲線未通過坐標原點。回收率為87.73% ~117.78%,RSD為10.80%。準確度僅為88.43%,變
異系數為10.33%。
摩爾法是壹種傳統的測量方
法,但僅對氯離子含量高的物質
測定較準確,此方法采用的鉻酸
鉀和硝酸銀試劑是有毒物質,且
排放到環境中會造成環境汙染;
硝酸銀試劑價格高,增加了測定
成本,影響了方法的實用性。
2.2
分光光度法
分光光度法是通過測定被測
物質在特定波長處或壹定波長
範圍內光的吸收度,對該物質進
行定性和定量分析的方法。
楊學芬[4]
研究了以過氧化氫
為氧化劑,硝酸-
甘油為介質,
分光光度法測定工業亞磷酸中
氯離子含量。此系統的穩定性
高,測定波長為380 nm,氯離子
含量在1~6 g/mL
範圍內呈線性
關系,相關系數為0.9999,回收
率為96%~105%。
關瑞等[5]
通過研究氯化銀沈
澱在明膠-
乙醇水溶液中的穩
定性,建立了測定微量氯離子的
分光光度分析方法,並應用到有
機工藝水中微量氯離子的測定。
在實驗最佳條件下,氯離子濃度
在0~6 mg/L
範圍內呈良好線性,
相關系數為0.9993,方法的標準
偏差為0.108,變異系數為
0.026,回收率為101%~105%。該
方法的檢測限為1.35 ×10
- 2
mg/L。
顧立公[6]
利用在酸性條件下,
氯離子與硫氰酸汞反應生成微
電離的氯化汞絡合物,釋放出等
量的硫氰酸根與鐵(III)反應生
成紅色的絡合物,建立了硫氰酸
汞-
硝酸鐵間接分光光度法測
定水中的微量氯離子的方法,得
出氯離子含量在0.2~10 mg/L
範
圍內呈良好線性關系,相關系數為
0.9992,回收率在95.8%~102.1%。
本方法靈敏度高,重現性好,方
法簡便、
快速,可用於水中微量
氯離子的測定。
氯化物***沈澱富集分光光度
法是壹種國標方法[7]
。該方法用
磷酸鉛沈澱做載體,***沈澱富集
痕量氯化物,經離心機分離後,
用硝酸鐵/
高氯酸溶液完全溶解
沈澱物,加硫氰酸汞/
甲醇溶液
顯色,用分光光度計間接測定痕
量氯離子,測定範圍為0.01~0.1
mg/L。
分光光度法可以精確測定微
量氯離子,靈敏度高,重現性好,
方法簡便、
快速。但是***沈澱富
集分光光度法采用的磷酸鉛、
硫
氰酸汞和甲醇試劑是有毒物質,
影響操作人員的健康,且這些試
劑使用量很大,如果不加處理直
接排放則會造成嚴重的環境汙
染。
2.3
濁度法
此濁度法是在比色法的基礎
上發展起來的,是根據測量光線
通過懸浮液後透射光的強度進
行分析的壹種分析方法,在臨床
分析、
食品分析、
環境分析、
工業
分析、
藥物分析等研究工作中應
用廣泛。
陳振華等[8]
研究了在表面活
性劑下用硝酸銀濁度法測定Cl
-
結果表明,在0.3 mol/L
酸性條件
下,吐溫- 60
作為AgCl
濁度的
穩定劑,該方法的線性範圍為
0~8 g/mL,相關系數r =0.991,回
收率為87.75%~103.33%,可用
於發電廠爐水中Cl
-
的測定。
王愛榮等[9]
研究了以乙二醇
為增溶劑,硝酸銀作沈澱劑,采
用氯化銀比濁法,在不分離硫酸
銅的條件下,直接測定酸性鍍銅
液中微量氯離子。測定波長為
440 nm,線性範圍為0~2 g/mL,其
俞淩雲,等:氯離子測定方法及其應用研究行業論壇
33
西部皮革第31
卷
表觀摩爾吸光系數ε=113 ×
105,方法檢出限為0.035 g/mL,
該法用於測定酸性鍍銅液中微
量氯離子在不同水平的加標回
收率為95.4%~104.5%。杜斌等[10]
研究了以非離子型微乳液乳化
劑OP/
正丁醇/
正庚烷/
水為介
質,
AgCl
濁度法測定氯離子的試
驗條件。該方法的線性範圍為
0.2~3.4 mg/L,
r =0.9997,
RSD <
2.8%,回收率為94%~104%,可
用於水泥原料、
生料及熟料中微
量氯離子的測定。
申海燕[11]
利用氯化銀沈澱在
明膠-
乙醇水溶液中的穩定性,
建立了壹種測定有機工藝水中
微量氯離子的濁度法。該法的線
性範圍為0~6 mg/L,
r =0.9993,回
收率為95.2%~101.3%。王兆喜
等[12]
設置流動註射分析儀器參數
工作波長為450 nm,進樣頻率為
60
次/h,建立了反相流動註射比
濁法測定水中的氯離子含量的
方法。 氯離子的濃度在1.0 ×
10
- 5
~10.0×10
- 4
mol/L
範圍內與
吸光度呈良好線性關系,相關系
數為0.995,回收率為95%
~101%,
RSD<2.49%。
此濁度法操作簡便、分析時
間短、
所用試劑少、
運行成本低,
檢測手段簡單,可與流動註射等
其他先進技術聯用,易實現自動
化,程序化,前景十分廣闊。由於
此濁度法具有上述特點,故在分
析科學中有廣泛的應用。
2.4
離子色譜法
離子色譜法是比較新的離子
分離技術。這壹方法現已廣泛應
用於環境監測、鹽水、土壤、
血
液、
鍋爐水、
乳制品等試樣的分
析之中。張新申等[13]
利用自制的
離子色譜儀對制革生產中的浸
酸廢液、
鉻鞣廢液、
總汙水中的
氯離子含量進行了測定。表明氯
離子濃度在10
- 5
~10
- 3
mol/L
範圍
內有很好的線性關系,測量上限
為10
- 2
mol/L,回收率為98.6%
~102.5%。朱子平[14]
采用萃取分
離法消除乳化液中有機組分對
測定組分的影響及對色譜柱所
造成的汙染,應用離子色譜法檢
測了乳化液中氯離子。其加標平
均回收率為95%~105%,相對標
準偏差優於4.0%(n=20)。
陸克平
等[15]
采用在堿性條件下加熱回流
分解雙氧水,用離子色譜法測定
其中微量氯離子。得出雙氧水中
氯離子檢測限為0.06 g/mL,線性
方程為C=1.155 ×10
- 5
A- 0.
02435。
線性範圍為0.10~15.0
g/mL,濃度與面積的相關系數r
=0.9992。
王艷麗等[16]
用高純Cu
粉與
濃HNO 3
進行氧化還原反應,
170
℃加熱分解Cu(NO 3
)2
,去除絕大
部分NO 3
-
,研究了壹種以離子色
譜電導檢測法測定HNO 3
中微、
痕量級Cl
-
的方法。Cl
-
的加標回
收率為87.5% ~93.7%
RSD(n
=5)<10%。劉燕等[17]
采用離子色
譜雙柱串聯法分離硝酸樣品,以
離子色譜電導檢測法測定硝酸
濾液中的痕量氯離子。氯離子濃
度在0.01~0.30 mg/L
範圍內與色
譜峰面積成線性關系,線性相關
系數r =0.997,對硝酸樣品進行
測定,氯離子的加標回收率為
96.5%~99.0%,測定結果的相對
標準偏差為1.84% ~ 2.83%(n
=5)。
宋曉年等[18]
采用預濃縮離子
色譜法(采用濃縮柱預先濃縮樣
品然後進來)測定高純度水中痕
量氯離子,分析結果線性回歸後
得出方程為H = 0.429C- 0.596,
式中H
為測得氯離子的峰高;
C
為氯離子含量,線性相關系數r =
0.9985,標準曲線有很好的線性
關系,可監測高純去離子水中
10
- 9
mg/L
氯離子。
離子色譜法簡單方便,靈敏
度高,測量快速而準確,且不需
要其他化學試劑,能快速、
簡便、
高效、安全地應用於實際分析,
尤其適用於大批量試劑連續測
定。
2.5
原子吸收法
原子吸收是基於被測物質的
原子蒸氣對特定譜線的吸收作
用來進行定量分析的壹種方法。
顧永祚等[19]
以Cl
-
與定量Ag
+
生
成AgCl
沈澱反應為基礎,提出了
壹個測定水中Cl
-
的間接原子吸
收法。Cl
-
濃度在0~50 g/mL
範圍
內呈線性。錢初洪等[20]
用原子吸
收法間接測定了己二酸銨中的
微量氯離子,此法通過加入乙醇
和霧化增效劑,使AgCl
的溶解度
降低並提高了原子化效率,從而
使測定的靈敏度提高,利用
AgNO 3
與己二酸銨中的微量氯離
子反應,測定剩余Ag
+
間接求出
氯離子的含量,測定的相對標準
偏差1.9%~4.8%,靈敏度(1%A)
為0.022 mg/L。
葉曉萍[21]
利用乙醇-
明膠可
以提高氯化銀沈澱的穩定性,
行業論壇
34
第15
期
AEO- 7
表面活性劑對銀原子化
效率也有明顯提高的特性,研究
了在壹定的介質條件及儀器分
析條件下,通過加入乙醇-
明膠
和AEO- 7,應用石墨爐原子吸收
法測定銀離子含量,從而間接測
定高價稀土氧化物礦物中氯離
子的含量,其線性範圍為20~100
g/L,相關系數r = 0.9997,
RSD
=0.27% ,加標回收率為92.5%
~102.0%。
楊延等[22]
研究了火焰原子吸
收光譜法間接測定電廠高純水中
的痕量氯離子的方法。該法采用
AgCl
沈澱,測定剩余Ag
+
間接求
出氯離子含量。方法的相對標準
偏差2.3%~8.6%,加標回收率為
94% ~103% ,靈敏度(1% A)為
0.029 mg/L。袁誌莉等[23]
研究了在
酸性環境中,氯離子與銀離子生
成沈澱,經氨水溶解後,用火焰原
子吸收法測定銀,從而間接測定
出氯離子的含量。本方法測定氯
的線性範圍為1.0~30 g/mL,相關
系數r = 0.999,靈敏度為0.023
g/mL
(1%),檢測下限為0.059
g/mL,回收率為95%~105%。
王傳化[24]
利用原子吸收分光
光度法間接測定了濕法磷酸中
微量氯(0.001%~0.01%)。此法是
用適當過量的Ag
+
與Cl
-
反應,
將生成的沈澱AgCl
過濾後,用原
子吸收分光光度法測定濾液中
剩余的Ag
+
含量,從而得出濕法
磷酸中氯含量。氯離子的線性範
圍為0.6~1.0 g/mL,加標回收率
為99.5%~101.1%。
原子吸收法具有較高的靈敏
度、
很好的重現性、
較高的準確
度和操作簡單,容易掌握,幹擾
少等特點,對微量氯離子的跟蹤
監測是科學準確簡單易行的。
2.6
流動註射法
流動註射分析(Flow Injection
Analysis,
FIA)是壹種容易實現現
場與鄰近實驗室聯線的自動分
析系統,廣泛用於環境、
農業、
醫
藥、
臨床、
食品、
冶金、
生物化學
等方面的金屬、
非金屬和有機物
等的分析。
廖霞等[25]
探討了用流動註射
-
雙波長分光光度法測定水樣中
遊離氯的最佳化學條件和最佳
儀器參數,選擇參比波長為650
nm,測定波長為553 nm
之處進
行比色測定。
此方法的精度
(RSD)和檢出限分別為1.2%
(10.88 g/mL,
n =11)和0.24
g/mL,用本系統測定水樣中的遊
離氯,回收率在100.0%~110.0%
之間,檢測限低,線性範圍寬,重
視性好,可對自來水及漂白粉遊
離氯進行實際應用測試。呂淑清
等[26]
根據氯離子與硫氰酸汞和硝
酸鐵在酸性介質中反應生成紅
色絡合物的吸光度與水中氯離
子的含量成正比這壹反應原理,
建立了用流動註射-
分光光度
法測定微量氯離子的自動分析
方法。本方法的檢測極限為20
g/L,相對標準偏差為0.89%,回
收率為100%~105%,分析速度為
60~120
樣/h,適用於火電廠爐水
中微量氯離子的測定。
王建偉等[27]
以可編程邏輯控
制器來控制系統以實現自動操
作,測定頻率達80
次/h,建立了
壹種應用流動註射連續快速監
測飲用水中余氯的方法。此方法
的檢測下限為0.1 mg/L,線性範
圍0.1~1.6 mg/L,相關系數為
0.9980。
FIA
技術具有裝置小型簡
單,操作可靠,自動化程度高,分
析速度快,分析結果重現性良
好,所需試劑量少,靈敏度高,檢
測下限低等優點,可與比濁法、
速差動力學分析等多種分析方
法聯用且效果更佳,具有良好的
應用前景。
2.7
容量法
容量法[28]
測定生活飲用水中
的氯離子,有硝酸銀容量法(A)
和硝酸汞容量法(B)。A
法為沈
澱滴定法,終點變色不敏銳,易
受氯化銀沈澱顏色的幹擾,需以
對比法判定終點,帶有很大的經
驗性。B
法的終點變色很敏銳,易
於判斷,但要嚴格控制試液的pH
值在3.0±0.2
的範圍內。若水樣
氯離子含量超過100 mg/L
時,須
稀釋樣品。
張艷[29]
確定了二苯卡巴腙
(DPCO)和二苯碳酰二肼(DPCI)
兩種指示劑、
不同酸度對測定結
果的影響,並不經稀釋直接測定
了高濃度的樣品,測量結果得A
法的回收率為102.2%~101.0%,
RSD<0.016;
B
法的回收率為
100.2%~100.5%,
RSD<0.009。硝
酸汞容量法測定飲用水中的氯
離子,方法簡便,終點變色敏銳,
其準確度和精密度均優於硝酸
銀容量法,由於水樣具有壹定的
緩沖能力,對於含量高的樣品,
只需將試液滴定前的pH
值控制
在3.2,樣品不需稀釋可以直接
俞淩雲,等:氯離子測定方法及其應用研究行業論壇
35
西部皮革第31
卷
測定。B
法的適應濃度範圍廣,準
確度、
精密度均優於A
法。其原
因主要是A
法的終點顏色由黃
色變為磚紅色,變色不明顯,需
以對比法進行終點判定。而B
法
的終點顏色是由微黃色變為淡
紫色,變色敏銳,易於判定。
陸克平[30]
發現現行硝酸汞容
量法測定安慶分公司煉油汙水
中氯離子含量大大偏高和終點
變色遲緩返色等現象。於是改進
了煉油裝置汙水的預處理方式,
將樣品經過濾直接加熱揮發、
酸
性條件下雙氧水消解和堿性條
件下煮沸等過程後,能完全消解
和去除幹擾離子,消除該現象,
而且氯離子幾乎無損;汞氯配合
物的平均配位數與試液中氯離
子濃度有關,通過控制取樣量,
使氯離子濃度在平均配位數近
似為2
的可準確測定範圍。改進
後的硝酸汞容量法單次試驗分
析周期為40 min,可準確測定至
0.35 mg/L
的氯離子,氯離子回收
率為98.0%~102.4%。
3
其他分析方法
陳建欣[31]
用電化學分析法測
定工業亞磷酸中氯離子含量,應
選擇測定環境無氯氣存在,參比
電極采用217
型雙鹽橋飽和甘
汞電極,若用新銀電極要先用乙
醇擦洗,用蒸餾水泡24 h,然後
用0.001 mol/L
的AgNO 3
溶液浸
泡20~30 min
將電極活化,用
0.1000 mol/L
的AgNO 3
標準溶
液,試樣質量10 g
左右為宜,本
方法適用於可溶性氯化物的測
定,測定最低值可低至0.0001%。
魏紅兵等[32]
研究了用自動電
位滴定法測定化肥中氯離子含
量的方法。本方法是先將樣品溶
解後加3
倍溶液體積量的乙醇,
然後用硝酸銀標準溶液通過自
動電位滴定儀進行等當點滴定。
氯離子的檢出下限為0.006,回
收率為98.6%~102.0%。
邵海青[34]
研究了以銀電極作指示電極,
217
型甘汞電極作參比電極,在
經冷藏後的銅電解液中加入過
量的硝酸銀標準溶液,以氯化鉀
標準溶液電位返滴定測定氯離
子含量。
測得回收率在95%
~100%範圍內,
RSD=2.8%。電位
滴定法簡捷方便,測量準確,工
作效率高。
4
展望
在各種氯離子分析方法中,
以離子色譜法最為簡便快速與
通用,而硝酸銀容量法和硝酸汞
容量法因不需要特殊的儀器及
器皿簡單,在廢水的氯離子含量
測定中最為普及。雖然汞量法需
用到有毒試劑,但較銀量法溶液
穩定性好、
可消除殘硫酸根及低
pH
條件下滴定可減少幹擾。但
兩種容量法都存在靈敏度低、
重
現性差、
誤差大等缺點。分光光
度法以其靈敏度高,選擇性好,
操作簡單等優點廣泛用於各種
微量以及痕量組分的分析。濁度
法快捷簡便且運行成本低,易實
現自動化,在分析科學中有廣泛
的應用。離子色譜法雖然檢測下
限很低,但操作復雜,儀器昂貴,
不適宜於實際生產的應用。原子
吸收法是壹種十分成熟的痕量
分析技術,操作簡便、
儀器普及、
重現性好、
有較高的靈敏度和選
擇性,因此在稀土工業生產及分
析研究工作中得到廣泛的應用。
流動註射有檢測限低,線性範圍
寬,重視性好,可與多種分析方
法聯用,以此建立起來的痕量氯
離子濃度自動測定方法,更適合
於發電廠、
化工廠等生產運行中
各種水或中間反應過程中的氯
離子濃度的實時、在線自動監
測。
參考文獻:
[1]但衛華.制革化學及工藝學[M].北京:
中國輕工業出版社,
2006.
[2]周少玲,張永.各種氯離子含量測定方
法的適用性探討及新方法的提出[J].
熱力發電,
2007,
37
(7):
75-76.
[3]周強,李萍,曹金花,等.測定植物體內
氯離子含量的滴定法和分光光度法
比較[J].
植物生理學通訊,
2007,
43
(6):
1163-1166.
[4]楊學芬.分光光度法測定工業亞磷酸
中的氯離子[J].
雲南化工,
2000,
27
(4):
15-16.
[5]關瑞,李昌,宋維.分光光度法測定微
量氯離子的研究與應用[J].化工標準
化與質量監督,
2000,(3):
7-9.
[6]顧立公.硫氰酸汞-硝酸鐵間接法測
定水中微量氯離子[J].江蘇衛生保健,
2005,
7
(1):
18.
[7]GB/T 6905.4—1993,鍋爐用水和冷卻
水分析方法—— —氯化物的測定:***沈
澱富集分光光度法[S].
[8]陳振華,泉香芹.濁度法測定發電廠爐
水中微量氯離子的研究[J].華北電力
技術,
2003,(2):
7-8.
[9]
王愛榮,楊波,胡小保.比濁法測定酸
性鍍銅液中微量氯離子[J].廣東微量
元素科學,
2007,
14
(3):
45-47.
(下轉第42
頁)
西部皮革行業論壇
36
西部皮革第31
卷
(上接第36
頁)
[10]杜斌,王淑仁,魏琴.非離子型微乳液
介質-氯化銀濁度法測定氯離子[J].
分析化學,
1995,
23
(5):
612.
[11]申海燕.水中微量氯離子的微型測定
[J].長沙鐵道學院學報,
2003,
21(4):
87-88.
[12]王兆喜,汪敬武.反相流動註射比濁
法測定水中氯離子[J].
南昌大學學
報,
2003,
27
(3):
248-251.
[13]張新申,鄭筱梅,陳子陽.離子色譜法
測定氯離子含量[J].
皮革科技,
1993,
18
(9):
14-16.
[14]朱子平.離子色譜法測定乳化液中的
氯離子[J].分析儀器,
2003,(4):
32-
34.
[15]陸克平,劉心烈.離子色譜法測定雙
氧水中微量氯離子[J].
化肥工業,
2002,
29
(6):
39-40.
[16]王艷麗,伯英,劉燕,等.離子色譜法
測量硝酸中痕量的氯離子(I)[J].化
學工程師,
2006,(2):
42-43.
[17]劉燕,侯倩慧,余季金,等.離子色譜
雙柱法測定硝酸中痕量氯離子[J].化
學分析計量,
2006,
15
(2):
40-41.
[18]宋曉年,王瑾.離子色譜法測定高純
度水中痕量氯離子[J].
宇航材料工
藝,
1996,(5):
55-56.
[19]顧永祚,楊洪高,潘楊,等.間接原子
吸收法測定水中氯化物研究[J].四川
環境,
1994,
13
(1):
23-25.
[20]錢初洪,梁巧榮,黃誌明.用原子吸收
法間接測定已二酸銨中的微量氯離
子[J].應用化工,
2003,
32
(3):
39-41.
[21]葉曉萍.原子吸收法間接測定高價稀
土氧化物[J].稀土,
2006,
27(2):
53-
56.
[22]楊延,薛來,劉來昌.用原子吸收法間
接測定電廠水中的痕量氯離子[J].上
海電力學院學報,
2000,
16
(1):
8-12.
[23]袁誌莉,孫建民,高崢,等.火焰原子
吸收法間接測定二氧化矽中的氯[J].
分析科學學報,
2006,
22
(1):
115-
116.
[23]王傳化.原子吸收分光光度法間接測
定濕法磷酸中的微量氯[J].磷肥與復
肥,
2006,
21
(4):
73-74.
[25]廖霞,肖仁貴,趙中壹.流動註射-雙
波長分光光度法測定水樣中的遊
離氯[J].
貴州化工,
1998,(3):
32-
34.
[26]李永生,董宜玲,呂淑清.爐水中微量
氯離子的流動註射分光光度測定法
[J].華東電力,
2003
(7):
70-74.
[27]王建偉,洪陵成.飲用水中余氯的反
相流動註射分析[J].儀器儀表與分析
監測,
2006
(1):
33-34.
[28]GB 5749—2006,生活飲用水衛生標
準[S].
[29]張艷.硝酸汞容量法測定氯化物[J].
中國公***衛生,
2004,
20
(3):
349.
[30]陸克平.汞量法測定煉廠含硫汙水中
氯離子的改進[J].
檢驗檢測,
2008
(9):
24-27.
[31]陳建欣.電化學分析法測定工業亞磷
酸中氯離子的含量[J].井岡山醫專學
報,
2007.14
(4):
43-44.
[32]魏紅兵,李權斌,王向東.自動電位滴
定法測定化肥中氯離子含量[J].磷肥
與復肥,
2005,
20
(2):
67-68.
[33]邵海青.電位滴定法測定銅電解液中
氯離子[J]. 治金分析,
2001,
21(4):
65.
部分:需從纖維中萃取的偶氮染料測
定[S].
[8]鵬搏.禁用偶氮染料檢測技術進展[J].
上海化工,
1997,
6
(22):
36-39.
[9]崔燕娟,賴勁虎,王誌暢.淺析生態紡
織品中禁用偶氮染料的檢測技術[J].
化工時刊,
2008,
22
(4):
76-77.
[10]GB 20400-2006.皮革和毛皮有害物
質限量[S].
[11]GB 19601-2004.
染料產品中23
種
有害芳香胺的限量及測定[S].
[12]GB/T 19442-2005.
皮革和毛皮化學
試驗禁用偶氮染料的測定[S].
[13]SN/T 1045.1.
染色紡織品和皮革制
品中禁用偶氮染料的檢測方法液相
色譜法[S].
[14]SN/T 1045.2.染色紡織品和皮革制品
中禁用偶氮染料的檢測方法氣相色
譜/質譜法[S].
[15]SN/T 1045.3.染色紡織品和皮革制品
中禁用偶氮染料的檢測方法氣相色
譜法[S].
[16]DIN 53316:
1997.皮革檢驗皮革某些
偶氮染料的測定[S].
[17]§35 LMBG 82.02-2.日用品分析紡織
日用品上使用某些偶氮染料的檢測
[S].
[18]§35 LMBG 82.02-3.日用品測試皮革
上禁用偶氮染料的檢測[S].
[19]§35 LMBG 82.02-4.日用品分析聚酯
纖維上使用某些偶氮染料的檢測[S].
[20]§64 LFBG 82.02-9.日用品研究可排
放4-氨基偶氮苯的偶氮染料之使用
驗證[S].
[21]ISO/TS 17234:
2003.
皮革化學測試
皮革中某些偶氮染料的測定[S].
[22]姜遜,張玉蓮,汪福坤.禁用偶氮染料
檢測現狀與發展建議[J].上海紡織科
技,
2008,
36
(1):
52-53.
[23]朱少萍,顧麗娟.禁用偶氮染料檢測
中假陽性結果的鑒別方法[J].科技信
息,
2007,(11):
85,
87.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
西部皮革行業論壇
42